Danke für den Beweis.GNut hat geschrieben:Induktionsanfang: fuer k=1 gilt es
Induktionsannahme: 8|(k^2-1) gelte fuer alle k element N und k ungerade
Induktionsschritt: (ich nehme hier k+2, da k+1 ja gerade ist)
(k+2)^2-1 = k^2 + 4k + 4 -1 = k^2 - 1 + 4(k+1) (hier hab ich einfach umsortiert und die 4 ausgeklammert)
der vordere Teil ist ja per Induktionsannahme durch 8 teilbar. Jetzt bleibt nur noch zu zeigen, dass 4(k+1) durch 8 teilbar ist. Den Teil kann man nochmal durch einen kleinen Induktionsbeweis zeigen (das geht relativ einfach) oder man nutzt aus, dass k ungerade ist. Heisst also, k+1 ist gerade und somit immer durch 2 teilbar, was wiederrum heisst, man kann eine 2 aus dem Term k+1 ausklammern und vor die Klammer ziehen. Somit ergibt ergibt 4(k+1) = 8((k+1)/2) was durch 8 teilbar ist. Und die Addition von 2 Zahlen, die durch 8 teilbar sind, ergibt eine Zahl, die ebenfalls durch 8 teilbar ist (anschaulich kann man eine 8 aus der Addition ausklammern).
Somit ist der Beweis erbracht.
edit: ja da muesste 5 als endziffer, hatte wohl nicht richtig mitgedacht ^^ Quasi 5 mal gerade zahl gibt 0 am ende, aber man multipliziert ja immer mit 5 und nicht mit dem exponent
Zum Endziffer 5 habe ich noch ein Verständnisproblem:
5^2 = 25
5^3 = ...5
5^4 = ...5
eigentlich nur 5er als endziffer oder???