Belief Functions und Beispiel "Medical Diagnosis"

Moderator: Einführung in die Künstliche Intelligenz

Jannis
Mausschubser
Mausschubser
Beiträge: 63
Registriert: 15. Apr 2015 17:10

Belief Functions und Beispiel "Medical Diagnosis"

Beitrag von Jannis » 8. Jul 2018 15:41

Hallo,

auf Folie 20 von Foliensatz Bayesian Networks (http://www.ke.tu-darmstadt.de/lehre/ss1 ... works1.pdf) wird der Begriff belief function eingeführt.

So wie ich die Folie verstehe, stellt eine belief function ein Intervall dar, welches mögliche Wahrscheinlichkeiten des Auftretens eines Ereignisses repräsentiert. An welcher Stelle findet man dies in dem Beispiel "Medical Diagnosis" der folgenden Folien wieder? Wie ergeben sich die Werte, die man auf Folie 23 sieht?

Viele Grüße,
Jannis

Karl Stelzner
Neuling
Neuling
Beiträge: 5
Registriert: 30. Mai 2018 12:26

Re: Belief Functions und Beispiel "Medical Diagnosis"

Beitrag von Karl Stelzner » 9. Jul 2018 15:24

Hallo Jannis,

Bayessche Netze umfassen neben der Graphstruktur auch Parameter, die für jeden Knoten eine bedingt Verteilung gegeben die Eltern spezifizieren. Das sind in diesem Fall die Tabellen auf Folie 22, wobei hier nur einige beispielhaft angegeben sind. Aus der so spezifizierten Verbundwahrscheinlichkeit lassen sich dann Wahrscheinlichkeiten, die von Interesse sind, berechnen. Diese Wahrscheinlichkeiten, z.B. P(Bronchitis | Visit to Asia, Smoking), werden belief functions genannt. Den Prozess, sie zu berechnen, nennt man Inferenz, und er wird in der nächsten Vorlesung nochmal genauer erläutert.

Folien 23 bis 27 stellen dies nur konzeptuell dar: Gegeben verschiedene Beobachtungen (grau hinterlegt) ergeben sich unterschiedliche Verteilungen über die restlichen Variablen. Das ist rein illustrativ zu verstehen; da wir die Parameter des Netzes nicht vollständig kennen, können wir auch die Berechnung dieser Zahlen nicht exakt nachvollziehen.

Viele Grüße.
Karl

Jannis
Mausschubser
Mausschubser
Beiträge: 63
Registriert: 15. Apr 2015 17:10

Re: Belief Functions und Beispiel "Medical Diagnosis"

Beitrag von Jannis » 9. Jul 2018 18:04

Hallo Karl,

danke für deine Antwort!

Wenn ich dich richtig verstehe, dann würdest du die bedingten Wahrscheinlichkeiten (z.B. P(Bronchitis | Visit to Asia, Smoking)) als belief function bezeichnen. Das sind ja prinzipiell die gleiche "Art" von Wahrscheinlichkeit wie wir sie z.B. in Aufgabe 5 von Übung 6 gesehen haben. Dort haben wir auch beispielsweise P(-a) = 1 - P(a) verwendet um die Wahrscheinlichkeit des nicht-Eintretens eines Ereignisses zu berechnen.

Aber genau das ist doch in dem Beispiel nicht der Fall. Dort summieren sich Wahrscheinlichkeiten eben nicht zu 100% auf (z.B. "Tuberculosis": 1.04 + 99.0 = 100.04 oder "Tuberculosis or Cancer": 6.48 + 93.5 = 99.98), also gilt die Annahme P(-a) = 1 - P(a) für belief functions (zumindest in diesem Beispiel) wohl nicht.

Wenn man sich den Beitrag zu belief functions auf Wikipedia anschaut (https://de.wikipedia.org/wiki/Evidenztheorie), dann wird auch genau dies als Konsequenz der belief functions genannt (Abschnitt "Erläuterndes Beispiel") und es geht dort eher um Zuverlässigkeit der einzelnen Evidenzen als um die "normalen" bedingten Wahrscheinlichkeiten.

Mein Problem ist also die Definition von Wikipedia, das Beispiel von den Folien und die Verwendung von P(-a) = 1 - P(a) in der Musterlösung von Aufgabe 6 unter dem Begriff "belief function" zu vereinen.

Viele Grüße,
Jannis

Karl Stelzner
Neuling
Neuling
Beiträge: 5
Registriert: 30. Mai 2018 12:26

Re: Belief Functions und Beispiel "Medical Diagnosis"

Beitrag von Karl Stelzner » 11. Jul 2018 16:43

Hallo Jannis,

Die Tatsache, dass die Zahlen auf den Folien nicht genau 1 ergeben würde ich schlicht auf Rundungsfehler zurückführen. Für mich sieht es so aus, dass einfach alle Werte auf drei Ziffern gerundet wurden. Dadurch kann es in den Fällen, in denen eine der beiden Wahrscheinlichkeiten einstellig ist, dazu kommen, dass die Summe nicht genau 1 ist. Einen konzeptuellen Unterschied zu den Belief Functions aus der Übung gibt es nicht.

Der Wikipedia-Artikel wiederum befasst sich mit einer Erweiterung des Bayes-Theorie, bei der Beobachtungen mit Unsicherheit behaftet sein können. Damit beschäftigen wir uns hier nicht, d.h. wenn wir z.B. nach P(Bronchitis | Visit to Asia, Smoking) fragen, sind wir zu 100% sicher, dass Visit to Asia und Smoking wahr sind. Bei uns ist mit Belief Function einfach nur die Wahrscheinlichkeitsverteilung gemeint, die wir, gegeben unser Wissen, über die ungesehenen Variablen ermitteln.

Viele Grüße
Karl

Jannis
Mausschubser
Mausschubser
Beiträge: 63
Registriert: 15. Apr 2015 17:10

Re: Belief Functions und Beispiel "Medical Diagnosis"

Beitrag von Jannis » 12. Jul 2018 23:46

Dankeschön, damit wurde es mir klar :)

Antworten

Zurück zu „Einführung in die Künstliche Intelligenz“