Die Suche ergab 12 Treffer
- 30. Apr 2009 13:40
- Forum: TK3: Ubiquitous / Mobile Computing
- Thema: Übung 1: Inspect
- Antworten: 5
- Zugriffe: 933
Re: Übung 1: Inspect
also das heißt jetzt konkret, der main:passive - teil würde ausreichen? Denn ich bin nach langem Durchgeklicke durch die Funktionen von inspect auf keine main:active-Part gestoßen... Den XML-Schnipsel des main:passive-Parts also mindestens zwei mal copy&pasten, oder?
- 6. Mär 2009 15:42
- Forum: TK2: Web Engineering, Web Cooperation und E-Learning
- Thema: Wie lief die Klausur?
- Antworten: 0
- Zugriffe: 762
Wie lief die Klausur?
Wie fandet Ihr die Klausur?
Ich finde es wurden viele Auswendiglern-Details abgefragt, aber sie war machbar.
Jetzt bin ich auf die Bewertung gespannt...
Ich finde es wurden viele Auswendiglern-Details abgefragt, aber sie war machbar.
Jetzt bin ich auf die Bewertung gespannt...

- 25. Nov 2008 23:01
- Forum: Archiv
- Thema: Übung 5 Programmierung: Webservice überlastet / langsam
- Antworten: 15
- Zugriffe: 1861
Re: Übung 5 Programmierung: Webservice überlastet / langsam
Darf ich in der Klausur auch <h1>Server is too busy</h1> schreiben wenn eine WSDL-Spezifikation gefragt ist? :D nee, mal im ernst, ich versuche jetzt schon seit einer halben Stunde alleine die WSDL runterzuladen. Habe jetzt wget versklavt um für mich in regelmäßigen Abständen zu gucken. edit: Hier g...
- 27. Aug 2008 13:01
- Forum: Archiv
- Thema: Takt-Halbieren
- Antworten: 11
- Zugriffe: 1333
Re: Takt-Halbieren
Also ich würde mal so sagen, dass man schon mit einem FF den Takt halbiert (always @ (posedge CLKalt) CLKneu <= ~CLKneu), siehe Folie 9-27. Was ihr hier macht ist den Takt vierteln.
- 26. Aug 2008 18:10
- Forum: Archiv
- Thema: Trennung STW-OPW
- Antworten: 2
- Zugriffe: 576
Trennung STW-OPW
Tach, In der Musterlösung der Implementierung des WKP-Softcores (Übung 9) ist nicht exakt so in STW-OPW getrennt worden , wie uns dies beim Systematischen Entwurf beigebracht wurde, und zwar befindet sich das Steuerwerk-Modul hier innerhalb des Operationswerks. Ich finde es aber viel besser wenn man...
- 20. Feb 2008 19:51
- Forum: Archiv
- Thema: Klausuraufgabe T-Test @ Sommer, 2006
- Antworten: 4
- Zugriffe: 657
Re: Klausuraufgabe T-Test @ Sommer, 2006
geile sache, wär ich nicht drauf gekommen, dass der Wert für die Wurzel da noch versteckt ist.
Das schenkt einem 2-3 minuten in der klausur, wenn man da nicht mehr mit Kommawerten rumrechnet
Das schenkt einem 2-3 minuten in der klausur, wenn man da nicht mehr mit Kommawerten rumrechnet

Re: farbe
Idee: Die beiden Lampen senden ein unterschiedliches Lichtspektrum aus. Zufällig erzeugt das Lichtspektrum den gleichen Farbeindruck, denn das Integral der (Spektralwertkurven multipliziert mit dem Spektrum) ist jeweils für r,g,b gleich, und das wars. Ein Gegenstand kann nun Teile dieser Spektren so...
- 19. Feb 2008 18:22
- Forum: Archiv
- Thema: [PCA] Algebraischer Trick
- Antworten: 8
- Zugriffe: 1119
Re: [PCA] Algebraischer Trick
Also, jetzt nochmal die essentiellen Formeln ohne Herleitung, korrigiert mich gegebenfalls, aber das müsste es jetzt sein: A = \frac{1}{\sqrt m}(\phi_1,...,\phi_M) (A^TA)v_i = \mu_i v_i Eigenvektoren: u_i = Av_i Eigenwerte: \lambda_i = \mu_i hmmm, marian hat es heute ohne das \frac{1}{\sqrt m} in de...
- 8. Feb 2008 12:16
- Forum: Archiv
- Thema: [PCA] Algebraischer Trick
- Antworten: 8
- Zugriffe: 1119
Re: [PCA] Algebraischer Trick
A = \frac{1}{\sqrt m}(\phi_1,...,\phi_M) Hier kommt eine N² x M - Matrix raus: Der Vektor \phi_i ist N² groß (siehe Folie 13). A^TA ergibt dann ein MxM -Matrix. Funzt. Gute Frage, nächste Frage: Es gilt also C = AA^T Gibt es jetzt ein Verfahren, die Eigenvektoren auszurechnen (wie das im Allgemeine...
- 8. Feb 2008 12:08
- Forum: Archiv
- Thema: [PCA] Algebraischer Trick
- Antworten: 8
- Zugriffe: 1119
Re: [PCA] Algebraischer Trick
tja, wenn man es weiß, ist es echt einfach.blowfish hat geschrieben:
wenn man das weiß, ist die herleitung von \(A^TA\) doch recht trivial.
danke für die Antwort! Werde das ganze mal an einem Beispiel durchexerzieren.
- 5. Feb 2008 19:43
- Forum: Archiv
- Thema: [PCA] Algebraischer Trick
- Antworten: 8
- Zugriffe: 1119
[PCA] Algebraischer Trick
Tach, Ich meine nun das Verfahren verstanden zu haben, wie man die Kovarianzmatrix C berechnet und daraus anschließend die Eigenvektoren für die Basen bildet. Damit müsste die PCA OHNE den algebraischen Trick zu bewerkstelligen sein. Nun zum algebraischen Trick: Leider werde ich nicht daraus schlau,...
- 26. Apr 2007 20:24
- Forum: Archiv
- Thema: Xilinx WebPACK
- Antworten: 12
- Zugriffe: 2913